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Proof Theory
Historical Background

Before around 1920 proofs were just plain text.

Hour of birth of proof theory:
Hilbert’s Program to formalize all of mathematics

Goals of proof theory: Given a logic,
1 find formal proof systems and
2 identify equal proofs.
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Proof Theory
Importance for Computer Science

The same questions affect programming:
1 find programming paradigms and
2 identify equal programs.

Known notions of program equivalence:
Programs are equivalent,

if they take arguments of the same type
and return objects of the same type.
if they compute the same function using the same algorithm,
in the sense that the programs are equal modulo inlining of
subprocedures.

...
if they are syntactically equal.

We will see: functional programs can be regarded as
proofs in intuitionistic logic.
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What is Intuitionistic Logic?

Starting point: classical propositional logic.
Formulas consist of propositional variables (a, b)
and boolean connectives (¬,→,∧,∨).

Criticism (e.g. by Heyting):
Is “i = 5, if A is true, and i = 4, if A is false”
a well-formed definition?

Similar problem in programming:
“i = 5, if program P terminates,
and i = 4, if P does not terminate”

Proposed solution: restrict classical reasoning
by excluding the tertium non datur principle.

This yields intuitionistic logic,
the logical framework for functional programming.

We will (for now) only consider the purely implicational
fragment!



Proof Theory Proofs in Intuitionistic Logic Equivalence of Proofs Conclusions

What is Intuitionistic Logic?

Starting point: classical propositional logic.
Formulas consist of propositional variables (a, b)
and boolean connectives (¬,→,∧,∨).

Criticism (e.g. by Heyting):
Is “i = 5, if A is true, and i = 4, if A is false”
a well-formed definition?

Similar problem in programming:
“i = 5, if program P terminates,
and i = 4, if P does not terminate”

Proposed solution: restrict classical reasoning
by excluding the tertium non datur principle.

This yields intuitionistic logic,
the logical framework for functional programming.

We will (for now) only consider the purely implicational
fragment!



Proof Theory Proofs in Intuitionistic Logic Equivalence of Proofs Conclusions

1 Proof Theory
History of Proof Theory
Intuitionistic Logic

2 Proofs in Intuitionistic Logic
The Simply Typed Lambda-Calculus
Proof Nets

3 Equivalence of Proofs
Equality of Lambda-Terms
Equality of Proof Nets

4 Conclusions



Proof Theory Proofs in Intuitionistic Logic Equivalence of Proofs Conclusions

The Simply Typed λ-Calculus
The Reference Proof System

Functional programming is about modeling functions.

Syntax of λ-terms (Church 1936), i.e. of programs:

e ::= v | λv .e | e e

Additionally annotate the type of every variable
and allow only well-typed applications.

Curry-Howard-Correspondence:

Read types as formulas.
A purely implicational formula is intuitionistically valid,
if and only if it corresponds to the type of a closed λ-term.

Example:

λ-term  type ! formula

λx .x  a → a ! a → a
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Proof Nets
Why Proof Nets?

Invention of proof nets: Girard (1986)

He wanted:

a proof system for linear logic
parallelity, compactness and minimal syntax
capturing the “essence” of a proof

He believed all these goals to be brought together
in proof nets.

Proof nets for classical logic:
Lamarche and Straßburger (2005).

Now: Proof nets for intuitionistic logic.
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Proof Nets
The Shape of Intuitionistic Nets

a • a ◦ a ◦ a • a • a ◦

→ ◦ → •

♦ •

→ ◦

y.6
(f.2,-f.1)

(x.3,-f.2) f.1

Nets are a graphical proof structure, consisting of:

a tree coding the formula we want to prove
some special trees (cuts) modeling modularity of proofs
(labeled) links between leaves of all these trees

Nodes are polarized to indicate
negative (•) and positive (◦) contexts.

Links have to connect negative and positive atoms.
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Proof Nets
Nets and λ-Terms

Nets extend the idea of functional programs:
There is a translation from λ-terms to nets.

We translate λf .λx .f (f x), where x : a and f : a→a.
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Proof Nets
Nets and λ-Terms

Nets extend the idea of functional programs:
There is a translation from λ-terms to nets.

We translate λf .λx .f (f x), where x : a and f : a→a.

λf .λx .f (f x) a ◦ a •

→ •

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

→ ◦

x.1 -f.2 f.2
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Proof Nets
Nets and λ-Terms

Nets extend the idea of functional programs:
There is a translation from λ-terms to nets.

We translate λf .λx .f (f x), where x : a and f : a→a.

λf .λx .f (f x) a ◦ a •

→ •

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

→ ◦

x.1 -f.1 f.1-f.2 f.2

This translation function is “almost injective”.

Nets emerging from closed λ-terms are called proof nets.
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Proof Nets
Properties of Proof Nets

Question: What kinds of properties distinguish proof nets? skip one
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Proof Nets
Properties of Proof Nets — Classical Correctness

Definition

A conjunctive pruning of a net is obtained by deleting one subtree
of each →• node and each ♦•-node (and the node itself).
A net is classically correct, if every conjunctive pruning contains at
least one link.

Example:

a ◦ a •

→ •

a • a ◦ a •

♦ •

a ◦

→ ◦

→ ◦

x.2 -f.1 f.1

λf .λx .f x
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Proof Nets
Properties of Proof Nets — Classical Correctness

Definition

A conjunctive pruning of a net is obtained by deleting one subtree
of each →• node and each ♦•-node (and the node itself).
A net is classically correct, if every conjunctive pruning contains at
least one link.

Example:

a • a • a • a ◦

→ ◦

→ ◦

f.1

a • a • a ◦ a ◦

→ ◦

→ ◦

x.2

a ◦ a •

→ •

a • a ◦ a •

♦ •

a ◦

→ ◦

→ ◦

x.2 -f.1 f.1

λf .λx .f x

a ◦ a • a • a ◦

→ ◦

→ ◦

-f.1

a ◦ a • a ◦ a ◦

→ ◦

→ ◦

x.2
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Proof Nets
Properties of Proof Nets — Classical Correctness

Theorem

All proof nets are classically correct.
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Proof Nets
Properties of Proof Nets — Classical Correctness

Theorem

All proof nets are classically correct.

Proof idea:
case 1: The proof net corresponds to an application-free term:
e = λv1. . . . λvn.vi

λv1

. . .

λvi

. . .

λvn
vi

→ ◦

→ ◦

→ ◦

±vi .j
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Proof Nets
Properties of Proof Nets — Classical Correctness

Theorem

All proof nets are classically correct.

Proof idea:
case 2: The proof net corresponds to a term with applications:
e = λv1. . . . λvn.e1 e2

N(e2) N(e1)

♦ •

λv1 λvn

. . .
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Proof Nets
Properties of Proof Nets — Classical Correctness

Theorem

All proof nets are classically correct.

Proof idea:
case 2: The proof net corresponds to a term with applications:
e = λv1. . . . λvn.e1 e2

Consider e′
i

= λv1. . . . λvn.ei .

N(e2) N(e1)

N(e′2) N(e′1)

♦ •

λv1 λvn

. . .
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Proof Nets
Properties of Proof Nets — Paths

Cuts model which term is used as input to which other term.

Links model which variable occurrences are affected by the
instantiation of which binder.

In combination, they model the information flow through a
term.
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Proof Nets
Properties of Proof Nets — Paths

Definition

Path = series of links that are connected by cuts
+ a well-formedness condition

Example: Paths in the proof net of (λf .λx .f (f x))(λy .y):

a • a ◦

→ ◦

a ◦ a •

→ •

♦ •

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

y.1 x.1 -f.2 f.2 -f.1 f.1

Theorem

The number of paths in each proof net is finite.
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Proof Nets
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Properties of Proof Nets — Paths

Definition

Path = series of links that are connected by cuts
+ a well-formedness condition

Example: Paths in the proof net of (λf .λx .f (f x))(λy .y):

a • a ◦

→ ◦

a ◦ a •

→ •

♦ •

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

y.1 x.1 -f.2 f.2 -f.1 f.1-f.1 f.1

Theorem

The number of paths in each proof net is finite.



Proof Theory Proofs in Intuitionistic Logic Equivalence of Proofs Conclusions

Proof Nets
Properties of Proof Nets — Paths

Definition

Path = series of links that are connected by cuts
+ a well-formedness condition

Example: Paths in the proof net of (λf .λx .f (f x))(λy .y):

a • a ◦

→ ◦

a ◦ a •

→ •

♦ •

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

y.1 x.1 -f.2 f.2 -f.1 f.1-f.1f.2

Theorem

The number of paths in each proof net is finite.



Proof Theory Proofs in Intuitionistic Logic Equivalence of Proofs Conclusions

Proof Nets
Properties of Proof Nets — Paths

Definition

Path = series of links that are connected by cuts
+ a well-formedness condition

Example: Paths in the proof net of (λf .λx .f (f x))(λy .y):

a • a ◦

→ ◦

a ◦ a •

→ •

♦ •

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

y.1 x.1 -f.2 f.2 -f.1 f.1-f.2 f.1

Theorem

The number of paths in each proof net is finite.



Proof Theory Proofs in Intuitionistic Logic Equivalence of Proofs Conclusions

Proof Nets
Properties of Proof Nets — Paths

Definition

Path = series of links that are connected by cuts
+ a well-formedness condition

Example: Paths in the proof net of (λf .λx .f (f x))(λy .y):

a • a ◦

→ ◦

a ◦ a •

→ •

♦ •

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

y.1 x.1 -f.2 f.2 -f.1 f.1

Theorem

The number of paths in each proof net is finite.



Proof Theory Proofs in Intuitionistic Logic Equivalence of Proofs Conclusions

Proof Nets
Properties of Proof Nets — Ramification

Paths model information/program flow

Parts of a program may be visited several times during one run.
The result of a program is determined by exactly one sequence
of operations.

Analog for proof nets:

Nodes may be connected by several paths.
But: This does not hold for output nodes!

Theorem

Proof nets are unramified, i.e. output nodes can be reached
by exactly one (maximal) path.
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Proof Nets
Properties of Proof Nets — Ramification

Example 1: Double application:

a • a ◦

→ ◦

a ◦ a •

→ •

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

♦ •

x.1 -f.2 f.2 -f.1 f.1y.1

only path: x.1, -f.2, y.1, f.2, f.1, y.1, -f.1
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Proof Nets
Properties of Proof Nets — Ramification

Example 1: Double application:

a • a ◦

→ ◦

a ◦ a •

→ •

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

♦ •

x.1 -f.2 f.2 -f.1 f.1y.1

Example 2: Pierce’s law:

a • b ◦

→ ◦

a •

→ •

a ◦

→ ◦
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Normalization of λ-Terms
When are two programs in the λ-calculus equal?

βη-reduction is terminating and confluent.

Two programs are considered equal,
if their βη-normal forms agree.

Example (id := λy .y):

(λf .λx .f (f x)) id  λx .id (id x) ∗ λx .x
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Normalization of Proof Nets

Idea behind the equality of proof nets is also:
Two proof nets are equal, if they can be reduced
to the same normal form.

In the λ-calculus, a normal form is reached
by the evaluation (= elimination) of applications.

In proof nets, applications correspond to cuts.

This gives the following idea:

Nets are in normal form, if they are cut-free.
We need a cut elimination procedure for nets.

Every net that can be reached from a proof net by a sequence
of cut eliminations will also be called proof net.
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The Cut Elimination Procedure

To eliminate a cut,
1 throw it away and
2 replace links by paths through the cut.

Example: Reducing the proof net of λf .λx .f (f x)

complex example
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The Cut Elimination Procedure

To eliminate a cut,
1 throw it away and
2 replace links by paths through the cut.
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♦ •
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♦ •
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The Cut Elimination Procedure

To eliminate a cut,
1 throw it away and
2 replace links by paths through the cut.

Example: Reducing the proof net of λf .λx .f (f x)
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♦ •
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The Cut Elimination Procedure

To eliminate a cut,
1 throw it away and
2 replace links by paths through the cut.

Example: Reducing the proof net of λf .λx .f (f x)

a ◦ a •

→ •

a • a ◦ a •

♦ •

a ◦

→ ◦

→ ◦

f.2 -f.1x.1, -f.2 f.1

complex example
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The Cut Elimination Procedure

To eliminate a cut,
1 throw it away and
2 replace links by paths through the cut.

Example: Reducing the proof net of λf .λx .f (f x)

a ◦ a •

→ •

a • a ◦

x.1, -f.2

→ ◦

→ ◦

f.2 -f.1 f.1

complex example
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The Cut Elimination Procedure

To eliminate a cut,
1 throw it away and
2 replace links by paths through the cut.

Example: Reducing the proof net of λf .λx .f (f x)

a ◦ a •

→ •

a • a ◦

x.1, -f.2
f.2, -f.1

→ ◦

→ ◦

f.1

complex example
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Properties of Cut Elimination

Theorem

It is decidable (up to link labels), whether a given net
is a proof net.

Theorem

Cut elimination transforms nets (proof nets) into nets (proof nets).
Cut elimination is terminating and confluent.

Corollary

Proof nets and cut elimination form a proof system for
intuitionistic logic, where equality of proofs is decidable.
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Properties of Cut Elimination

Theorem

Normal forms in the λ-calculus and in any proof net calculus
cannot coincide.

Theorem

In many cases, this proof system “refines”
the system of λ-terms and βη-reduction:

Each η-step corresponds to
one step of cut elimination.

Each linear β-step corresponds to
one step of cut elimination.

Each β-step with closed argument corresponds to
an unchanged normal form.

Each weakening step corresponds to
the deletion of links in the normal form.
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Properties of Proof Nets and Cut Elimination
Exemplary Advantages of Proof Nets

Proof nets are more fine-grained than λ-terms
and preserve some modularity information:

λf .λx . (λy .x) (f x) λf .λx .x
β

proof net + ce

a ◦ a •

→ •

a • a ◦

→ ◦

→ ◦

proof net + ce

a ◦ a •

→ •

a • a ◦

→ ◦

→ ◦
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Properties of Proof Nets and Cut Elimination
Exemplary Advantages of Proof Nets

Proof nets are often more space- and time-efficient:
The β-normal form of

λx .λz .(λy .z y y)n+1 x

has a size exponential in n and
is reached after at most exponentially many reductions,

but the corresponding normal proof net

has only linearly many links and
can be computed in linear time.
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Properties of Proof Nets and Cut Elimination
Exemplary Advantages of Proof Nets

Proof nets are often more space- and time-efficient:
The β-normal form of

λx .λz .(λy .z y y)n+1 x

has a size exponential in n and
is reached after at most exponentially many reductions,

but the corresponding normal proof net

a • a ◦ a ◦ a • a ◦

→ •

→ •

→ ◦

→ ◦

n times

has only linearly many links and
can be computed in linear time.
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Properties of Proof Nets and Cut Elimination
Scaling

Sums and Products

Theorem

The translation of λ-terms into proof nets
can be extended to sums and products.
All theorems (except unramification) remain valid.

Theorem

Each reduction step of sum- or product terms
corresponds to the deletion of links in the normal form.

Universal Types

Theorem

A proof net for a formula A gives rise to proof nets
for every instance Aσ.
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Interesting Nets

dneg null

a • ⊥ ◦

→ ◦◦

⊥ •

→ ••

a ◦

→ ◦◦

⊥

A
→ ◦

pair π1

•· · · •

A1

•· · · •

A2

•· · · •

A1

•· · · •

A2

∧

→ ◦

→ ◦

•· · · •

A1 A2

•· · · •

A1

∧

→ ◦



The Cut Elimination Procedure
A Complex Reduction Step

Example: Reducing the proof net of (λf .λx .f (f x))(λy .y)

a • a ◦

→ ◦

a ◦ a •

→ •

♦ •

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

x.1 -f.2 f.2 -f.1 f.1y.1

back



The Cut Elimination Procedure
A Complex Reduction Step

Example: Reducing the proof net of (λf .λx .f (f x))(λy .y)

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

x.1 -f.2 f.2 -f.1 f.1y.1

back



The Cut Elimination Procedure
A Complex Reduction Step

Example: Reducing the proof net of (λf .λx .f (f x))(λy .y)

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

x.1 -f.2 f.2 -f.1 f.1-f.2 f.2y.1

back



The Cut Elimination Procedure
A Complex Reduction Step

Example: Reducing the proof net of (λf .λx .f (f x))(λy .y)

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

x.1 -f.2 f.2 -f.1 f.1-f.1 f.1y.1

back



The Cut Elimination Procedure
A Complex Reduction Step

Example: Reducing the proof net of (λf .λx .f (f x))(λy .y)

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

x.1 -f.2 f.2 -f.1 f.1-f.1f.2y.1

back



The Cut Elimination Procedure
A Complex Reduction Step

Example: Reducing the proof net of (λf .λx .f (f x))(λy .y)

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

x.1 -f.2 f.2 -f.1 f.1-f.2 f.1y.1

back



The Cut Elimination Procedure
A Complex Reduction Step

Example: Reducing the proof net of (λf .λx .f (f x))(λy .y)

a • a ◦ a •

♦ •

a ◦ a •

♦ •

a ◦

→ ◦

x.1 -f.2,y.1,f.2 -f.1,y.1,f.1

back
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